返回主站|会员中心|保存桌面|手机浏览
普通会员

武汉倾佳电子有限公司

BASiC基本SiC碳化硅MOSFET模块替代英飞凌IGBT模块|BASiC基本SiC碳化硅MOSFET模块替...

产品分类
  • 暂无分类
站内搜索
 
首页 > 供应产品 > 商用空调热泵驱动中SiC碳化硅MOSFET
商用空调热泵驱动中SiC碳化硅MOSFET
点击图片查看原图
产品: 浏览次数:6商用空调热泵驱动中SiC碳化硅MOSFET 
单价: 面议
最小起订量:
供货总量:
发货期限: 自买家付款之日起 3 天内发货
有效期至: 长期有效
最后更新: 2024-06-30 21:45
  询价
详细信息
 为什么在商用空调热泵驱动中SiC碳化硅MOSFET正在替代IGBT!
国产基本™(BASiC Semiconductor)SiC碳化硅MOSFET在三相热泵商用空调压缩机驱动中的应用-倾佳电子(Changer Tech)专业分销
 
适用于三相热泵商用空调压缩机驱动的国产基本™(BASiC Semiconductor)碳化硅MOSFET模块-倾佳电子(Changer Tech)专业分销
 
倾佳电子(Changer Tech)致力于基本公司国产碳化硅(SiC)MOSFET在电力电子应用中全面取代IGBT,全力推动基本公司国产碳化硅(SiC)MOSFET加速革掉IGBT的命!Changer Tech is making every effort to promote the domestic BASiC silicon carbide (SiC) MOSFET to accelerate the replacement of IGBT!
 
对于通用应用,SiC 功率器件可以替代 Si IGBT,从而将开关损耗降低高达 70% 至 80%,具体取决于转换器和电压和电流水平。IGBT 相关的较高损耗可能成为一个重要的考虑因素。热管理会增加使用 IGBT 的成本,而其较慢的开关速度会增加电容器和电感器等无源元件的成本。从整体系统成本来看SiC MOSFET加速替代IGBT已经成为各类新的电力电子设计中的主流趋势。SiC MOSFET 更耐热失控。碳化硅导热性更强,可实现更好的设备级散热和稳定的工作温度。
 
Si IGBT 的一个显著缺点是它们极易受到热失控的影响。当器件温度不受控制地升高时,就会发生热失控,导致器件发生故障并最终失效。在高电流、高电压和高工作条件很常见的电机驱动应用中,例如电动汽车或制造业,热失控可能是一个重大的设计风险。SiC MOSFET 更适合温度较高的环境条件空间,例如汽车和工业应用。此外,鉴于其导热性,SiC MOSFET 可以消除对额外冷却系统的需求,从而有可能减小整体系统尺寸并降低系统成本。由于 SiC MOSFET 的工作开关频率比 Si IGBT 高得多,因此它们非常适合需要精确电机控制的应用。高开关频率在自动化制造中至关重要,其中高精度伺服电机用于工具臂控制、精密焊接和精确物体放置。
 
SiC 功率器件的卓越材料特性使这些器件能够以更快的开关速度、更低的开关损耗和更薄的有源区运行,从而实现效率更高、开关频率更高、更节省空间的设计。因此,SiC MOSFET 正成为电源转换应用中优于传统硅(IGBT,MOSFET)的首选。
 
 
IGBT芯片技术不断发展,但是从一代芯片到下一代芯片获得的改进幅度越来越小。这表明IGBT每一代新芯片都越来越接近材料本身的物理极限。SiC MOSFET宽禁带半导体提供了实现半导体总功率损耗的显著降低的可能性。使用SiC MOSFET可以降低开关损耗,从而提高开关频率。进一步的,可以优化滤波器组件,相应的损耗会下降,从而全面减少系统损耗。通过采用低电感SiC MOSFET功率模块,与同样封装的Si IGBT模块相比,功率损耗可以降低约70%左右,可以将开关频率提5倍(实现显著的滤波器优化),同时保持最高结温低于最大规定值。
 
为了保持电力电子系统竞争优势,同时也为了使最终用户获得经济效益,一定程度的效率和紧凑性成为每一种电力电子应用功率转换应用的优势所在。随着IGBT技术到达发展瓶颈,加上SiC MOSFET绝对成本持续下降,使用SiC MOSFET替代升级IGBT已经成为各类型电力电子应用的主流趋势。
 
IGBT芯片技术不断发展,但是从一代芯片到下一代芯片获得的改进幅度越来越小。这表明IGBT每一代新芯片都越来越接近材料本身的物理极限。SiC MOSFET宽禁带半导体提供了实现半导体总功率损耗的显著降低的可能性。使用SiC MOSFET可以降低开关损耗,从而提高开关频率。进一步的,可以优化滤波器组件,相应的损耗会下降,从而全面减少系统损耗。通过采用低电感SiC MOSFET功率模块,与同样封装的Si IGBT模块相比,功率损耗可以降低约70%左右,可以将开关频率提5倍(实现显著的滤波器优化),同时保持最高结温低于最大规定值。
 
未来随着设备和工艺能力的推进,更小的元胞尺寸、更低的比导通电阻、更低的开关损耗、更好的栅氧保护是SiC碳化硅MOSFET技术的主要发展方向,体现在应用端上则是更好的性能和更高的可靠性。
为此,BASiC™基本公司研发推出更高性能的第三代碳化硅MOSFET,该系列产品进一步优化钝化层,提升可靠性,相比上一代产品拥有更低比导通电阻、器件开关损耗,以及更高可靠性等优越性能,可助力光伏储能、新能源汽车、直流快充、工业电源、通信电源、伺服驱动、APF/SVG、热泵驱动、工业变频器、逆变焊机、四象限工业变频器等行业实现更为出色的能源效率和应用可靠性。
 
为满足光伏储能领域高电压、大功率的应用需求,BASiC™基本公司基于第二代SiC MOSFET技术平台开发推出了2000V 24mΩ、1700V 600mΩ高压系列碳化硅MOSFET,产品具有低导通电阻、低导通损耗、低开关损耗、支持更高开关频率运行等特点。
针对新能源汽车的应用需求,BASiC™基本公司研发推出符合AEC-Q101认证和PPAP要求的1200V 80mΩ和40mΩ 的碳化硅MOSFET,可主要应用在车载充电机及汽车空调压缩机驱动中。
B3M040120Z是BASiC™基本公司基于第三代碳化硅MOSFET技术平台开发的最新产品,该系列产品进一步优化钝化层,提升可靠性,相对于上一代产品在比导通电阻、开关损耗以及可靠性方面有更进一步提升。
BMF240R12E2G3是BASiC™基本公司基于PcoreTM2 E2B封装的1200V 5.5mΩ工业级全碳化硅半桥功率模块,产品采用集成的NTC温度传感器、Press-Fit压接技术以及高封装可靠性的氮化硅AMB陶瓷基板,在导通电阻、开关损耗、抗误导通、抗双极性退化等方面表现出色。
B2M040120T和B2M080120T是BASiC™基本公司基于第二代碳化硅MOSFET技术开发的顶部散热内绝缘的塑封半桥模块,主要应用于OBC、空调压缩机和工业电源中。
BASiC™基本公司推出可支持米勒钳位的双通道隔离驱动芯片BTD25350系列,此驱动芯片专为碳化硅MOSFET门极驱动设计,可高效可靠抑制碳化硅MOSFET的误开通,还可用于驱动MOSFET、IGBT等功率器件。
 
 
为了保持电力电子系统竞争优势,同时也为了使最终用户获得经济效益,一定程度的效率和紧凑性成为每一种电力电子应用功率转换应用的优势所在。随着IGBT技术到达发展瓶颈,加上SiC MOSFET绝对成本持续下降,使用SiC MOSFET替代升级IGBT已经成为各类型电力电子应用的主流趋势。
 
倾佳电子(Changer Tech)致力于国产碳化硅(SiC)MOSFET功率器件在电力电子市场的推广!Changer Tech-Authorized Distributor of BASiC Semiconductor which committed to the promotion of BASiC™ silicon carbide (SiC) MOSFET power devices in the power electronics market!
 
 
热泵(英语:heat pump)是将热量从较低温下的物质或空间传递到更高温度下的另一种物质或空间的装置,也就是使热能沿自发热传递的相反方向移动。热泵为完成将能量从热源传递到散热器这一非自发过程,须要来自外部的能量。常见的应用是暖气、冷气和冷冻机。但术语“热泵”更为笼统,适用于用于空间加热或空间冷却的许多暖通空调设备。
 
热泵最常见的设计包括四个主要部件–冷凝器,膨胀阀,蒸发器和压缩机。循环通过这些组件的传热介质称为制冷剂。
热泵利用低沸点液体经过节流阀减压之后蒸发时,从较低温处吸热,然后经压缩机将蒸汽压缩,使温度升高,在经过冷凝器时放出吸收的热量而液化后,再回到节流阀处。如此循环工作能不断地把热量从温度较低的地方转移给温度较高(需要热量)的地方。
 
热泵比简单的电阻加热器具有更高的能源效率。
 
热泵按照交流输入电源可以分为单相热泵和三相热泵,其输出电功率可覆盖3 kW到几十千瓦。热泵的室外机,主要由三部分构成,包含PFC、压缩机逆变器和风机逆变器。无论是单相热泵,还是三相热泵,都包含了PFC这一功率环节。对于用电设备产生的谐波电流,全球各国以及地区都制定了明确的法规,热泵产品只有满足了谐波电流法规要求,才能在所在国家和地区进行销售,PFC也就是功率因素校正, 则可以有效改善用电设备的输入谐波电流并提高其功率因素。
 
根据用电设备的输入相电流大小,可以把用电设备分为两大类,适用不同的法规进行谐波电流的市场准入管理。如图3,以输入相电流有效值等于16A为界,当用电设备的输入相电流有效值小于或者等于16A时,适用IEC 61000-3-2,对应的国标就是GB17625.1,这也是广大工程师最熟悉的;当用电设备的输入相电流有效值大于16A时,则适用IEC61000-3-12。这两个主要的谐波电流法规最近有更新 , 但内容主体 基本不变 。 最 新 的 IEC61000-3-2:热泵的结构以及谐波电流法规2:2019+A1-2021,将于2024年4月9日起执行;国标GB17625.1-2022,将于2024年7月1日起执行。
 
对于输入相电流有效值小于或者等于16A的三相热泵产品,目前市场上被动式PFC和主动式APFC的方案并存,被动式PFC方案,可以选用25A的PIM模块,在整流桥之前加入三相交流电抗器,这种方式简单易操作,当然,缺点也很明显,为了满足谐波电流限值的要求,在单个交流电抗器上的压降可达到输入相电压的2%-4%,所以,交流电抗器感值大,效率低,个头重,不能安装在PCB板上,只能安装到机壳内壁,然后通过导线连接到PCB板上,导致生产线装配成本也上去了。
只有提高开关频率,才能有效减小磁性器件的体积,所以既能满足谐波电流法规,又高效,还能把电感或者电抗器安装到PCB板上的有源PFC方案就成了最优选择, 当输入相电流有效值小于等于16A时(模块方案),三相桥的碳化硅MOSFET功率模块的APFC方案,均可满足谐波电流限值和板载PFC电感的要求。
 
对于热泵应用中的输入谐波电流,被动式PFC的优点是简单易操作,缺点也很明显,更换输入电压或者功率后,电抗器就得重新去试凑匹配;主动式APFC则没有这个烦恼,主要的难度在于软件控制算法层面 。 随着谐波电流法规的趋严以及终端客户的更高要求 , 采用三相碳化硅MOSFET功率器件解决方案的主动式APFC是一个必然趋势。
 
负载例如热泵系统可以是无功负载,也就是,该负载可具有净无功分量,该净无功分量不是运行负载所必须的有功功率的一部分。由供电设施所提供的功率可以是实际提供的电流和实际提供的电压的乘积,或伏安。由负载所消耗的测量功率可以是等于有功功率的瓦特计测量值。功率因数可以通过有功功率除以伏安功率得到。
压缩机的功率因数可部分地取决于压缩机的驱动系统的类型。例如,由感应马达驱动的固定速度压缩机可具有0.95的功率因数。由变频器驱动的可变速压缩机可具有0.6的功率因数。功率因数问题可由功率因数校正(PFC)系统解决,该PFC系统可以是被动的或主动的。被动PFC系统的示例可以是用于补偿电感负载的电容器组。主动PFC系统的示例可以是改变载荷的无功分量以实现无功负载的更准确的匹配的系统。
压缩机系统的额定功耗可部分地通过在热泵系统的低负载条件下以瓦特为单位测量功率来确定。因此,热泵系统的额定功耗可基于功率因数校正对从供电设施获取的电流影响很小的条件。
原文链接:http://www.0515.org/chanpin/show-96076.html,转载和复制请保留此链接。
以上就是关于商用空调热泵驱动中SiC碳化硅MOSFET全部的内容,关注我们,带您了解更多相关内容。
询价单
0条  相关评论